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Abstract. Starting from the stochastic formulation of scalar field theory, Ito’s theorem is 
used to derive a functional equation for the generating functional. Solving this equation 
the usual Feynman diagram rules are recovered. 

1. Introduction 

Recently there has been much interest in the similarities between quantum field theory 
and the theory of (functional) stochastic differential equations?. The solutions of both 
these theories are characterised by their Green functions, that is averages of products 
of the field variables. It is conjectured that by choosing a particular form of stochastic 
differential equation both theories will produce the same Green function. The proof 
of this conjecture leads to a new (the so-called stochastic) prescription for quantising 
fields. 

Adopting Ito’s formulation of stochastic calculus leads immediately to an equation 
for the functional which generates the Green functions. For the free field this equation 
is easily solved in closed form. No closed form solution can be found for the interacting 
field theory ( A ~ J ~ )  but perturbation theory leads to the usual Feynman diagram rules. 

In § 2 the stochastic quantisation hypothesis is formally stated. In 09 3 and 4 the 
equation for the generating functional is derived and solved. The paper is concluded, 
in § 5,  with a discussion of the outlook for stochastic field theory. 

2. Stochastic quantisation 

Classically the dynamics of a field 4(x) ,  defined over d spacetime coordinates x, is 
given in terms of the action S[+(x)] by 

Moving to the quantum level equation (2.1) is replaced by, in Euclidean space, the 
path integral expression 

I See for example Parisi and Wu (1981) or Floratas and Iliopoulos (1983). 
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where Z, is the generating functional for the Green function as can be seen by 
functionally differentiating with respect to the source J (x) .  

Now consider the (stochastic) field +(x, T )  defined over spacetime coordinates x 
and an additional coordinate T with action S[$(x, T ) ]  and let the dynamics with respect 
to the new coordinate be given by the Ito stochastic differential equation? 

(where W(x) is the white noise process), and impose initial conditions 

It is conjectured that, in the limit of large T, the ensemble average of products of 
+(x, 7) field approach the corresponding field theoretic Green functions calculated 
from equation (2.2). 

Introducing the stochastic generating functional 

the conjecture becomes 

T+OO lim Z,,,,( T )  = 2,. (2.6) 

3. Ito’s theorem and the generating functional 

The essential nature of stochastic calculus is contained in Ito’s theorem which states 
that if a field 4(x,  T )  obeys equation (2.3) then the functional F[4(x, T ) ]  obeys 

(3.1) 

In particular choosing F[  $(x, T ) ]  = exp(J dx 4(x,  T)J(x)) and averaging over the 
ensemble gives 

which can be rewritten using equation ( 2 . 5 )  as$ 

t For a recent introduction to stochastic differential equations see Schuss (1980). * Note that this equation only defines Z up to a multiplicative constant, which is fixed by the normalisation 
condition = 1. 
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4. Solution of generating functional equation 

First consider the free field, with action given by 

S = - dx (-a"+ a& + m 2 + 2 ) .  

The equation for the generating functional is 

2 'I 

which can easily be solved by going to momentum space. Define 

j (  p )  = I dy eipyJ(y), 

then 

with the solution (noting initial condition Zstoc( T = 0) = 1) 

This expression relaxes to the expected Feynman form for large r, hence 

lim Zstoc( T )  = ZFT. 
7-m 

(4.1) 

For the interacting field theory with a potential V ( + )  (a polynomial in +) and 
coupling constant A the action is 

S =  dx(-fa'& a , 4 + ~ m 2 + 2 + A V ( + ) ) .  I (4.7) 

The generating functional obeys 

where ' denotes differentiation. 
This equation is difficult to solve for general r. The stochastic quantisation 

hypothesis depends on equation (4.8) having a limiting solution for large r or 
equivalently that 

(7) = 0. a z s t o c  lim - 
?+a ar 

This can be proved by perturbation theory in A. Let 

(4.9) 

(4.10) 
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and substitute in equation (4.8) to give 

(4.1 1) 

with Z-l = 0. 

Gdj,  T, j ‘ ,  T’] obeying 
Again it is best to go into momentum space. Introduce the free field Green functional 

= 8(7-T7/)S[j-?]. (4.12) 

Equation (4.12) has the obvious solution 

(4.13) 

Using this Green functional the solution of equation (4.10) can be written 

Zn[i T ]  = Iom d7’ I D[?( p)]Gd& T, 7, 7’]F,[jf, T ’ ] ,  (4.14) 

where 

(4.15) 

is to be considered in momentum space. Making use of the form of the Green functional 
and setting T - T’ = s gives 

(4.16) 

To verify equation (4.9) it is necessary to consider the structure of the F,. For 
n = 1 it contributes two factors to the integral in equation (4.16): 

and a polynomial in j (  p ) ,  starting with the first power of j( p) and each j (  p) multiplied 
by either exp[-s(p2+ m’)] or exp[-T( p’+ m’)] .  Hence the integrand in equation 
(4.16) is exponentially small for large T and a Z l / d T + O .  

The above analysis can be repeated for n = 2 and then for n = 3 and so on for 
all n. Hence 

V n. a Z n  lim -=0 
r-m a 7  

(4.17) 
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The large T solution of equation (4.8) is now very simple: set d Z / d r  = 0 and note 
the operator identity 

which suggests the solution 

Z,,,,( T = 03) = N exp[ -A I dx V( L)] 6J(x) exp( dp’(p)’(-p)), p 2 +  m2 (4.19) 

where N is a normalisation constant. This proves the conjecture 

lim Z,,,,( T) = ZFT. 
7” 

Indeed equation (4.19) is a good starting point for developing the Feynman perturbation 
series. 

5. Outlook 

Using techniques from stochastic calculus it has been shown directly that, for scalar 
fields, the stochastic quantisation conjecture holds. This should be compared with the 
more usual approach of introducing a T dependent probability density obeying the 
Fokker-Planck equation and defining averages as functional integrals over the probabil- 
ity density. 

This point might be particularly important for gauge theories where there are 
problems in defining functional integrals due to constraints between the fields. Con- 
straints can be easily handled in the stochastic formulation as shown by Thomas (1984). 
Work is being actively carried out in this direction for gauge theories. 
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